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The difficulty of solving equations of hydrodynamics - especially equations of thermo- 
gravitational convection - has always caused investigators to employ a two-dimensional formu- 
lation of problems whenever possible. Two-dimensional formulations have made it possible 
to solve many problems and have received particular impetus with the advent of numerical meth- 
ods, since the examination of three-dimensional problems remains at the limit of the capabili- 
ties of modern computers even for the simplest cases. With two-dimensional formulations, 
numerical solutions have been obtained for nonsteady equations of natural convection in the 
case of Grashof numbers reaching 10s-1012 [i]. This has enabled researchers to follow the 
evolution of the flow structure in the core and boundary layers. However, limits on the num- 
ber of points and computing time have made it impossible to obtain the range of scales neces- 
sary to construct three-dimensional spectra and to examine inertial ranges. As regards tur- 
bulence, thetransition to two measurements is of fundamental importance because it conserves 
entropy and thus retains the special properties of turbulent flows. A large number of studies 
have been devoted to uniform isothermal two-dimensional turbulence (see [2, 3], for example). 
When slight thermal irregularities not significantly affecting the fluid flow are introduced 
into the flow, the temperature can be regarded as a passive impurity. The spectra of this 
impurity for two-dimensional turbulence were studied in [4-6]. However, there has still been 
no study of the spectral laws in the case when the temperature from the passive impurity be- 
comes the main source of turbulent motion. The goal of the present work is to investigate 
spectral processes in developed two-dimensional turbulent convection. The study is conducted 
on the basis of a hierarchical model of turbulence proposed in [7] and developed for the case 
of two-dimensional isothermal turbulence in [8]. Two-dimensional turbulence is a hypothetical 
phenomenon to a significant extent. Actual flows exhibiting the properties of two-dimensional 
turbulence are generally quasi-two-dimensional, which has an effect on their behavior. This 
includes flows in both the atmosphere and ocean [9] and flows of liquid metals in a magnetic 
field [i0, ii]. The turbulence closest to being two-dimensional is probably that observed 
in soap films [12] and excited by the motion of a grid. In regard to examination of two- 
dimensional turbulent convection, it is necessary to indicate the situation in which the spec- 
tral laws being discussed might be observed. The model of developed convection in a two-dimen- 
sional formulation is familiar and convenient for experiments and theoretical studies. Con- 
vective flow in a thin vertical slit (Hele-Shaw cell) is such a model and is widely used 
for numerical and experimental studies of supercritical regimes of convective motion (such 
as in [13]). As will be shown below, the Hele-Shaw model offers one of the few possibilities 
of realizing developed two-dimensional turbulence containing inertial intervals under labor- 
atory conditions. 

i. Hierarchical Model of Turbulent Convection. A hierarchical model is constructed 
by projecting equations of hydrodynamics on a special functional basis. The model makes it 
possible to obtain cascade equations to describe spectral processes in a broad range of wave 
numbers. Construction of the model for isothermal two-dimensional turbulence was described 
in detail in [8]. Let us briefly discuss the principal features of the construction of a 
ihierarchical model for turbulent convection. 

We write the equations of thermal gravitational convection of a viscous incompressible 
fluid in dimensionless form 

Ov/c~t -]-(vv)v_ = - - V P  -J-- A v  -j- Or%T,  

OT/Ot -~ ( v v ) T  = ( I / P r ) A T ,  V v = O, 
(i.I) 

where Pr = v/X is the Prandtl number; Gr = (g$/~2)/s is the Grashof number; ~ is a unit 
vector directed vertically upward (along the y axis); as the units of measurement of length, 
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time, velocity, pressure, and temperature we chose s s v/s p ~ 2 / s  T*. The velocity 
and temperature are expanded in basis functions describing a set of eddies of different scales: 

v (r, t) = ~ A~n (~) VlVn (r - -  rNn), T (r, t) = ~_~ C~n (t) TNn (r - -  r3-n), 
2q,n ~,n  

( 1 . 2 )  

where N is the number of the stage, determining the size of the eddy; the number n determines 
the position of the eddy in space (rNn is the radius vector of the center of the eddy). The 
eddies of the N-th stage are dispersed in space with the density PN = (3~/4)2 2N and in terms 
of size are twice as large as the eddy of the stage N + i. 

A distinctive feature of basis functions is that the Fourier transforms of functions 
of different stages do not overlap in the wave-number space. The functions are localized 
in r- and k-spaces. The explicit form of the functions is 

(r - - r N ~  ) • e (d o (2s) - -  Jo (s)) ( 1 . 3 )  
VNn = - V ' ~  i r . . :  rwn I $ ' 

T/vn = 2 N (2J I (2s) -- J, (s)) 

where s = ~2NlrNn - r I ; e is a unit vector normal to the plane being examined; J0 and J1 are 
Bessel functions. 

Equations ( i . i )  projected on basis (1.2) give us a system of equations for the coef f i -  
cients ANn and CNn. To obtain a small-parameter model, i t  is necessary to change over to the 
system of equations for the mean (with respect to the stage) values of AN and CN (AN 2 = 
<ANn2>, CN 2 = <CNn2> 

d A  N 
dt = X X T-~'~ILA:~AL "4- K~AN + GrF~C~;  ( 1 . 4 )  

M L > M  

dCN "~ '~ HNMLAMCL + KN CN, ( 1.5 ) 
M L  

where  KN = - 2 1 . 4 " 2 2 N ;  F N = 3-3  "2N. 

N o n l i n e a r  t e r m s  p l a y  t h e  main r o l e  in  s p e c t r a l  t r a n s p o r t ,  t h e s e  t e rm s  b e i n g  r e p r e s e n t e d  
in  t h e  model  e q u a t i o n s  by t h e  m a t r i c e s  TNML and HNML. The p r o c e d u r e  o f  o b t a i n i n g  t h e s e  ma- 
t r i c e s  i s  t h e  main s t e p  in  t h e  c o n s t r u c t i o n  o f  t h e  model  and was examined  in  d e t a i l  in  [8]  
f o r  t h e  m a t r i x  T. The method u sed  t o  o b t a i n  t h e  m a t r i x  H i s  s i m i l a r .  T a b l e  1 shows t h e  cen -  
t r a l  p a r t  o f  t h e  m a t r i x  T, w h i l e  T a b l e  2 shows t h e  m a t r i x  H f o r  N = 0. The e l e m e n t s  o f  t h e  
m a t r i x  f o r  N # 0 a r e  d e t e r m i n e d  f rom t h e  r e l a t i o n s  

N TIVML ~- TO,M_N,L_N, IIN~IL = 2NHo,.~_~,L_N. 
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One important difference in the form of the matrices is connected with the fact that the ma- 
trix T describes the spectral transport of the energy of the velocity pulsations by the velocity 
field itself and permits convolution relative to the diagonal M = L. Meanwhile, both the 
temperature field and the velocity field participate in energy transport in the case of the 
temperature pulsations, which makes it impossible to convolute the matrix H and leads to non- 
trivial diagonals M = L and M = N. Let us write Eqs. (1.4) and (1.5) in a form convenient 
for analysis and numerical solution: 

/max 
dA~ 

dt = Z ( T s , N - z - I , N - 1 A s - z - I A x - 1  + rN, N_z,N+~As-zAs+~ + r.~,N+z,~+~+~As+~A.~+z+0 + KNA~-+ Gr F ~ C n ; ( 1 .  6 ) 
l ~ l  

/max 
dC N K N 

rn l ~ l  

(1.7) 

An increase in gmax corresponds to allowance for the interaction of increasingly distant 
stages. In the numerical experiments, ~max ranges from 5 to I0. 

As other approaches to the study of spectral characteristics of turbulence, the hier- 
archical model rests on the notion of homogeneous turbulence. Thus, the question of boundary 
conditions is not discussed below except for the conditions on the lateral walls of the Hele- 
Shaw cell. 

2. Passive Impurity in Two-Dimensional Turbulence. In the case of small Grashof num- 
bers, temperature behaves as a passive impurity. This makes it possible to compare the re- 
sults obtained here with well-known data on the evolution of the spectra of a passive impu- 
rity in two-dimensional turbulence. 

With small Gr, the coefficients CN do not affect the behavior of AN, and Eq. (1.6) re- 
tains two steady-state solutions 

A ~  = Ao2qN/aandA N = A02-N~ ( 2 . 1 )  

c o r r e s p o n d i n g  t o  i n e r t i a l  i n t e r v a l s  o f  t r a n s p o r t  o f  e n e r g y  and  e n t r o p y ,  w h e r e  t h e  e n e r g y  s p e c -  
t r u m  r e s p e c t i v e l y  s a t i s f i e s  t h e  l a w s  [2]  

E273~ -3  Ce2/zk -513 . E (k) = ~ ~ ,o E (k) = ana 

w i t h  t h e  c o n s t a n t s  C = 1 . 5 5  and  Cm = 1 . 3 6  [ 8 ] .  Two i n e r t i a l  i n t e r v a l s  c a n  be  o b s e r v e d  i n  
a t u r b u l e n t  f l o w  s u p p l i e d  w i t h  e n e r g y  a t  a c e r t a i n  i n t e r m e d i a t e  v a l u e  o f  t h e  wave  n u m b e r s  
k0 ( F i g .  1,  w h i c h  shows  a c o m p o s i t e  g r a p h  o f  t h e  s p e c t r a l  l a w s  w i t h  s m a l l  Gr and  d i f f e r e n t  
P r ) .  The  n t ~ b e r s  n e x t  t o  t h e  l i n e s  i n  F i g s .  1 - 4  c o r r e s p o n d  t o  t h e  p o w e r s  o f  t h e  wave  n u m b e r s  
k in the spectral regions. 
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In the inertial-convective range, Eq. (1.7) gives a steady-state solution CN = C02 -4N/3 
in the inertial energy interval, depending on the behavior of the coefficients AN (2.1). 
This solution corresponds to the spectrum of the temperature-pulsation energy 

Et(k) : Bete-t /3k -5/3, ( 2 . 2  ) 

while in the inertial entropy interval CN = C02 -N, which gives the following for the tempera- 
ture-pulsation spectrum: 

Et (k) = B~ete: l l3k- t .  ( 2 . 3  ) 

The r a t e  o f  d i s s i p a t i o n  o f  t h e  t e m p e r a t u r e - p u l s a t i o n  e n e r g y  ~ t  i s  d e t e r m i n e d  by t h e  e x p r e s -  
s i o n  

e , =  E E EPhH~MLChAMCL (2.4) 
h > ~ N  L < N  M 

and is equal to 1.76AOC02 with spectrum (2.2) and 3.1AoC02 with spectrum (2.3), which corres- 
ponds to values of the constant B = 0.5 and Bm = 0.92. Spectrum (2.3) with the constant Bm = 
1.56 was obtained in [4] in a numerical modeling of two-dimensional turbulence with a passive 
impurity. 

The temperature cascade is preserved in the viscous-convective interval realized at large 
Prandtl numbers, while the corresponding velocity scales are suppressed by viscosity, and 
only large-scale motion is significant. Considering that only A 0 is nontrivial and that CN = 
C02 -SN, we write (1.7) in the form 

dCN = AoCo 2'~r176 (2~ -- 2-~ dt 

h steady state is possible at H0,_N,_I/H0,_N, I = 220 . It is evident from the matrix H (see 
Table 2) that the value of 8 approaches 0 = i with an increase in N. This is confirmed by 
numerical modeling of the viscous-convective interval (Gr = 0, Pr = i000, Emax = I0). Thus, 
the temperature-pulsation energy spectrum in the viscous-convective interval also satisfies 
the law 

Et(k) ,-., k-1. ( 2 . 5  ) 

I n  t h e  i n e r t i a l - d i f f u s i v e  i n t e r v a l  ( l ow  P r a n d t l  n u m b e r s ) ,  t h e  v e l o c i t y  c a s c a d e  i s  p r e -  
s e r v e d ,  b u t  t h e r m a l  d i f f u s i o n  i s  s i g n i f i c a n t .  T h i s  makes  t h e  d i f f u s i o n  t e r m  d e p e n d e n t  on 
t i m e ,  a s i t u a t i o n  wh ich  in  ( 1 . 7 )  l e a d s  t o  t h e  e q u a t i o n  

E HNMOAMCo q- KNCN = O. 

Only the diagonal M = N = 0 is significant in the matrix, while for CN we obtain 

2-~N C~ = 2-NCoAoHo, o , -N "" 

which gives the spectrum 

Et(k)  ~ k -7. 
(2.6) 
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Spectra (2.5) for the viscous-convective interval and (2.6) for the inertial-diffusive inter- 
val in two-dimensional turbulence were obtained from the Markov model in [5]. 

The behavior of a passive impurity in two-dimensional turbulence was modeled by numeri- 
cally solving system (1.6)-(1.7) with Gr = 0. The number of stages ranged from 10-20 and 
s = i0, which corresponds to allowance for all interactions with a 1% error. 

It is known from the solution of Eqs. (1.6) [8] that the steady-state solutions are un- 
stable and that regimes (2.1) are established on the average. In obtaining the inertial 
energy interval characterizing the flow of energy down the spectrum, it is necessary to supply 
energy to a certain intermediate stage. Such a situation was modeled by solving the equations 
with initial conditions corresponding to concentration of the velocity and temperature pulsa- 
tion energy near the fifth stage. In this case, it is possible to observe the interval 
AN 2 - 2-2N/3 and the corresponding value CN 2 % 2 -8N/3 for N ~ 5. Figure 2 shows values of 
AN 2 and CN 2 averaged over time from the 1000th to the 1500th step (i, AN2; 2, CN2; Pr = 100; 
the time step x = 10-s). An inertial entropy interval is established up the spectrum. The 
energy of the lower stages has increased so much by about the 5000th step that the distribution 

2 2N 2 2N A N - 2- , C N ~ 2- is established over the entire inviscid interval. 

Figure 21 shows results of modeling of the degeneration of two-dimensional turbulence 
with a passive impurity. Here Pr = i, x = 10 -8 , and points 1 (AN 2) and 2 (CN 2) show mean values 
over time from the 1000th to the 2000th step. Energy was supplied to the bottom stage. The 
energy supply was cut off at the 2000th step. Points 3 and 4 give mean values of AN ~ and CN 2 
over time from the 8000th to the 9000th step. It is evident that the energy of the lowest 
velocity stage even increases, while the amplitude of the remaining stages decreases by sev- 
eral orders of magnitude. This is the phenomenon of energy condensation in the lowest stage, 
which is well known for two-dimensional turbulence and in [14] was termed the 6-asymptote 
of the energy spectrum of two-dimensional turbulence. The amplitude of the temperature pulsa- 
tions decreases smoothly. 

3. Dew~loped Turbulent Convection. It is interesting to follow the effect of convec- 
tion on the spectral energy distribution. If the exponents • and 8 in the laws A N - 2 -xN and 
fiN - 2 -8N change in the case of large Grashof numbers, then a similarity regime will no longer 
be assured by balancing of the corresponding triplet of terms in Eq. (1.6). Similitude can 
be assured only by balancing of the nonlinear terms and the term with Gr. This is possible 
if TNMLAMAL '̂ GrFNCN, so that 

Gr~A~,2N(1-2• 2N(1-e). 

We obtain the following second condition from Eq. (1.7) 

( 3 . 1 )  

20 = 2 3 - z - 0  ( 3 . 2 )  

C o m p a r i s o n  o f  ( 3 . 1 )  a n d  ( 3 . 2 )  s h o w s  t h a t  u = 3 / 5  a n d  0 = 5 / 5 ,  w h i l e  t h e  s p e c t r a  m u s t  s a t i s f y  
the laws 
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E(k) ,'~ k-tUs; ( 3 . 3 )  

Et(k)  "" k -7/5. ( 3 / 4 )  

P o s i n g  t h e  q u e s t i o n  o f  t h e  a c t u a l  e x i s t e n c e  o f  t w o - d i m e n s i o n a l  t u r b u l e n t  c o n v e c t i o n  con-  
t a i n i n g  t h e  i n e r t i a l  i n t e r v a l s  ( 3 . 3 )  and ( 3 . 4 ) ,  l e t  us  examine q u a s i - t w o - d i m e n s i o n a l  m o t i o n  
in  a f l u i d  in  a t h i n  v e r t i c a l  p l a n e - p a r a l l e l  s l i t  w i t h  a c h a r a c t e r i s t i c  l e n g t h  s and d i s t a n c e  
d be tween  t h e  w a l l s  (d << s  The m o t i o n  i s  t w o - d i m e n s i o n a l  (v  = (Vx, Vy, 0 ) ) ,  t h e  w a l l s  a r e  
assumed t o  be t h e r m a l l y  i n s u l a t e d ,  i . e . ,  T = c o n s t ( z ) ,  and t h e  v e l o c i t y  v = 0 a t  z = 0 and 
z = d. V e l o c i t y  i s  g i v e n  in  t h e  form v = v ( x ,  y ,  t ) f ( z ) ,  w h i l e  f ( z )  = 6z (d  - z ) / d  2. Given 
t h e  above  a s s u m p t i o n s ,  we w r i t e  t h e  d i m e n s i o n l e s s  e q u a t i o n  f o r  v e l o c i t y ,  i n t e g r a t e d  o v e r  z ,  
in the form 

Ov 6 
0-7- + -E (vv) v = - -  VP + Av - -  Dv + Gr ~T, 

where D = (i/d) 2 

The equation for temperature does not change with the chosen boundary conditions. The 
transition to the hierarchical equations causes a multiplier to appear in (1.4) in front of 
the matrix of nonlinear interactions. It also results in an additional term describing the 
friction of the fluid against the side walls. In contrast to "internal" viscosity, this fric- 
tion makes an equal contribution to motion of any scale. We obtain the system 

6 [dAN -~ Z -5 TNMLAMAL + (K~ - -  D) AN + GrF~C~,; 
dt 

(3.5) 

dCN K N 
�9 d - - T = Z H N ~ L A ~ C L  + - - ~ - C ~ .  ( 3 . 6 )  

S p e c t r a  ( 3 . 3 )  and ( 3 . 4 )  p a s s  t h r o u g h  Eqs.  ( 3 . 5 )  and ( 3 . 6 )  j u s t  as  t h r o u g h  ( 1 . 6 )  and ( 1 . 7 ) .  
The only question is whether or not friction against the side walls of the slit will allow 
turbulent flow with the spectral laws (3.3) and (3.4) to develop. 
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We solw~d system (3.5)-(3.6) with Gr = 1.5"i0 II, Pr = 7, D = 5.105 There were ten 
stages. This corresponded to a Hele-Shaw cell with walls made of a thermally insulating 
material (foam plastic) with a size on the order of I • i m. The width of the slit was 5 
mm. The slit was filled with water, a temperature difference on the order of 50 ~ was imposed, 
and ~max = i0, i.e., we considered the interactions of all of the excited stages with all of 
the remaining stages. Energy was supplied to the zeroth stage (C o = I). 

Figure 4 shows the results of the numerical solution. Points i (AN =) and 2 (CN 2) were 
averaged over the interval from the 2000th to the 5000th time step. An amplitude distribu- 
tion corresponding to spectra (3.3) and (3.4) was established over the six lowest stages. 
In an actual flow we might expect some decrease in the energy of the higher stages due to 
the effect of perturbations with scales smaller than d and, moreover, having a three-dimen- 
sional structure. Nevertheless, the behavior of the low-frequency part of the spectrum in 
which laws (3.3) and (3.4) were obtained should not change. 

As noted above, the values of AN and CN continuously fluctuate. This fluctuation pro- 
voked further study. To study the fluctuations of AN and CN, we recorded the values of these 
coefficients during long time intervals and subjected the results to Fourier analysis. We 
thereby constructed time-dependent energy spectra of pulsations of a certain scale. The spec- 
tra have a fairly complicated structure and many peaks, which is indicative of a developed 
stochastic regime of fluctuation. 

Analysis of experimental time-spectra of the lowest spatial modes of supercritical con- 
vective flows in [15] produced a quadratic relation expressing the dependence of the fre- 
quency corresponding to the next peak on the number of the peak. It turned out that this 
interesting relation embraces a broad range of phenomena. The authors of [16] succeeded in 
observing a quadratic relation for the peaks in space-time spectra not only in supercritical 
fluid motions but in developed turbulent convection in closed cavities and in a Hele-Shaw 
MHD cell. 

Analysis of the space-time spectra obtained in numerical experiments with hierarchical 
equations indicated their similarity to the empirical data. Figure 5a shows the time spec- 
trum of the lowest temperature stage with the degeneration of convective motion in a Hele- 
Shaw cell. The numbers of the peaks are indicated on the curve. The numbers with primes 
pertain to multiple frequencies. Figure 5b shows the dependence of the root from the fre- 
quency R = /~-n, at which the peak appears on the number of the peak. The dependence confirms 
the quadratic nature of the relation. 

It should be noted that the fluctuations of the coefficients AN are qualitatively dif- 
ferent in the case of isothermal turbulence. One frequency and its multiple harmonics domi- 
nate the spectrum. 

We thank V. D. Zimin for his attention to the work and his useful discussions. 
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MODELING TURBULENT TRANSFER IN A CHANNEL 

BY MEANS OF POINT VORTICES 

P. I. Geshev and B. S. Ezdin UDC 532.527+532.4 

Much attention has recently been paid to the direct numerical modeling of turbulence. 
Some studies have examined three-dimensional turbulent flow in a channel at moderate Reynolds 
numbers Re by numerically solving the complete system of Navier-Stokes equations [i]. The 
main difficulty in such calculations is that motions on a scale much smaller than the dis- 
tance between the nodes of the finest computing grids used in practice are important in tur- 
bulence at sufficiently large Re. Despite the increasing capacity of modern computers, the 
limitation on Re remains. There are other approaches to the numerical modeling of wall tur- 
bulence, such as the method of large vortices [2]. In this method, the scales of motion are 
divided into a calculable part (by means of "filtered" Navier-Stokes equations for large 
scales) and a closable, small-scale part (a one-parameter closing relation is generally used), 
i.e., the hypothesis of the independence of small-scale motions from large-scale motions is 
employed. In accordance with the principle of the similarity of turbulent flows with respect 
to the Reynolds number [3], the large-scale motion of a continuum away from the walls is slight- 
ly dependent on Re. Thus, it can be described by the equations of an ideal swirled fluid. 
In the proposed computational scheme, transverse motion is modeled by the inviscid two-dimen- 
sional motion of point vortices, while the complete Navier-Stokes equation, with a constant 
pressure gradient, is calculated in the mean direction of motion. Two-dimensional point vor- 
tices have been used to study mainly free flows - jets and wakes in flow about different re- 
cesses and projections. It was shown in [4] that the spectral energy flux is constant in a 
system of point vortices and the flow spectrum is close to a Kolmogorov spectrum. The "5/3" 
law follows from similarity theory in the case of isotropic turbulence. In wall turbulence, 
this theory leads to logarithmic velocity profiles in the region where the flow of the longi- 
tudinal component of momentum to the wall is constant [5]. Considering the successful model- 
ing of isotropic turbulence in [4], there is hope for obtaining interesting results in wall 
turbulence by modeling turbulent transfer by the method of longitudinal point vortices. It 
was shown in the present study that such calculations give results which agree qualitatively 
with experimental findings; the logarithmic profiles of velocity and temperature are calcu- 
lated, profiles of the Reynolds stresses and turbulent heat fluxes are obtained, and the amp- 
litudes of fluctuating quantities are investigated. A model of turbulence based on point 
vortices should be considered a direct numerical model. Such an approach has an undoubted 
advantage, since it does not require any closing assumptions. 
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